GENERAL CHEMISTRY B Instructor: Willetta Greene-Johnson, Ph. D., Room 307 Cudahy Science 773-508-3537 Who am I: A chemical physicist (Stanford University/ University of Chicago) interested in surface optico-physical interactions and mildly interested in (1) thermodynamical (2) unstable systems; (3) producer, composer, orchestrator, pianist, sequencer, and conductor. I guest conducted with the Chicago Sinfonietta two times before and again this past January 2016. One of my songs was doubly tracked on a Grammy award winning CD in 2004. Since then it has been covered by five other groups. Physical Office Hours: Wednesday 10:00 A - 11:00 A CS-307 Email Office Hours (ONLY): Thursday 10:00 A - 11:00 A wgreene@luc.edu #### Required: - Required: Chemistry, the Central Science. 13th ed. Theodore L. Brown, et. al. Boston: Pearson Prentice Hall: 2014 ISBN: 978-0321910417. Mastering Chemistry NOT required - Chemistry 102 Course Packet, authored by the instructor. This essential lecture packet is available online at www.universityreaders.com. The course packet will be mailed to you within a few days of ordering, but you'll have immediate online access to 20% or so once order is completed. **Meetings**: Lectures are scheduled MWF in FH-133, at 11:30 P-12:20 P. You must also be registered in discussion section 012-013. Discussions: meet on Fridays according to the following schedule: | Section | | Location | Time | |---------|--------------------|----------|---------------------| | 012 | Dr. Greene Johnson | FH-007 | F: 12:35 P - 1:25 P | | 013 | Dr. Greene Johnson | FH-007 | F: 1:40 P – 2:30 P | Due to the large number of students / sections that are matriculated through this course yearly, there can be <u>absolutely no alteration</u> of this schedule. **Course Description**: A study of chemical principles and generalizations with emphasis on the development of a scientific attitude and an understanding of the fundamental concepts of chemistry. **Calculators**: A scientific calculator is sufficient. Calculators cannot be shared while exams are in progress and their cases/covers must be removed. Be familiar with your calculator and the status of its batteries. The student is responsible for having a working calculator in lecture and on an exam day. **Cell Phone¹ Policy**: It is forbidden to video/audio record lecture (except Loyola University staff). Stills of the board may be taken after class. *During exams, cell phone, wireless devices, and unauthorized materials are strictly forbidden; subject to device confiscation and dismissal from exam.* **SAKAI Connection:** The syllabus, homework assignments for the semester, discussions, and discussion answers will be posted at the following website: www.luc.edu, look under LINKS, click on **Sakai**). Students possessing a Loyola email address are able to access this site. **Additional Information:** For your convenience, test taking tips are listed on page 7 of this syllabus, as well as a protocol on page 8 regarding soliciting a recommendation from me, should you desire one and qualify (see protocol). Academic fall calendar and bookstore information is listed on page 9. i All technology emart phone tablate lantone Google Glace whatever. Violations will be treated as instances of academic dichonesty (coe #### Objective of this course in grander detail: By the conclusion of this course, the student should experience the following outcomes: - 1. Understand the fundamental principles of physical chemistry - 2. Acquire a knowledge base of basic terminology and classifications - 3. Apply concepts creatively as well as methodically to solve multi-tiered problems - 4. Know how to rank, estimate, analyze and critically evaluate a range of models - 5. Gain a broader understanding of the role of chemistry in human endeavor - 6. Appreciate the collaborative and global effort of the scientific enterprise Specifically the engaged student should improve in her or his ability to - Comprehend the following concepts: - o Kinetics, reaction rate, Arrhenius equation, rxn mechanism, rate limiting step - o Dynamic equilibrium and Equilibrium constants - o Titrations, Buffers, pH, Lewis and Arrhenius A/B models, Solubility product - Complex ions and octahedral Crystal Field theory - o Electrochemical cells (batteries, fuel cells, transduction, respiration) - Spontaneity vs. nonspontaneity, entropy, cyclic processes, and free energy - Introduction to nuclear chemistry - Identify reagents and general chemical processes: - o Identify acids, bases, acidic and basic salts, buffers, solubility rules (Chemistry101) - write appropriate net ionic prototypical rxns in aqueous solution - o be able to closely estimate and accurately calculate pH - equilibrium constant K and how it predicts spontaneity status of a reaction - o complex ion, Lewis bases, geometry of "simpler" complex ions and compounds. - Assess outcome feasibility: estimate energy and entropy of chemical processes - Work and exchange ideas with others: cordially solve weekly group problems - Appreciate the impact of chemistry: realize better how chemistry impacts life processes, technology, local, and global issues. - Contribute constructively: as a science-literate, ethically responsible citizen and voter. Later this semester, you will receive an emailed invitation to assess me via the IDEA (Individual Development and Educational Assessment). The form provides a thorough diagnostic of how successfully students think the instructor realized the objectives boxed above, as well as the value of the course and other contextual experiences. This opportunity will be available online at http://www.luc.edu/IDEA for a one-week time window only, IDEA manual states: 'As student raters, please be aware that the results of your ratings for this class will be included as part of the information used to make decisions about promotion/tenure/salary increases for this instructor. Fairness to both the individual and the institution require accurate and honest answers.' # **Chemistry 102 Schedule of Topics** | Date | Day | Topic | Chapter | Pages (approx) | | |----------------|------|--|---------------|---|--| | 1/20 JAN | W | Rate of Reactions | 14 | 574-582 | | | 1/22 | F | Integrated Rate Law | 14 | 582-590 | | | 1/25 | W | Arrhenius Equation | 14 | 591- 600 | | | 1/27 W | | Rxn mechanisms; 14 | | 601-606 | | | | | Rate limiting step | | Friday=1st discussion | | | 1/29 | F | Catalysis | 14 | 607-614 | | | 2/1 FEB | W | Gas phase Equil'm | 15 | 628-637 | | | 2/3 | W | Const. K; Equil. Table | 15 | 632-644; 644-650 | | | 2/5 | F | van't Hoff equation | 15 | 648-656 | | | 2/8 | M | Le Chateliér's Principle | 16 | 657-660 | | | 2/10 | W | Acid/base categories | 16 | 670-679, 684-687 | | | 2/12 | F | pH, Ka and Kb | 16 | 680-684; 688-695 | | | 2/15 | W | WB, Conjugates, Salts | 16 | 696-699, 705-712 | | | 2/17 | W | Review 14-16 ~25 min | | OPTIONAL | | | 2/19 | F | Exam 1: Ch.14-16 | IN CLASS | Seating: SKIP
Every 3 rd row! | | | 2/22 | M | Binary Acids/strength | 16 | 705-712 | | | 2/24 | W | Buffers | 17 | 729-737 | | | 2/26 | F | Titrations
SA/SB; SA/WB; SB/WA | Titrations 17 | | | | 2/29 | M | K _{sp} and ppt equil'm | 17 | 748-751 | | | 3/2 MAR | W | Common Ion Effect | | | | | 3/4 | F | Complex Ions | 23 | 726-728, 751-753
1002-1006 | | | | | (Lewis Acid/Base) | 17 | 756-758 | | | 3/7-12 | M-Sa | SPRING BREAK | sPrInG BrEaK | Spr.Break Worksheet | | | 3/14 | M | Ligands, Nomenclature | 23 | 1007-1016 | | | 3/16 | W | Crystal Field Theory | 23 | 1020-1026, 1030-3 | | | 3/18 | F | Review:16,17,23 ~25 min | | Optional no handout | | | 3/21 | W | EXAM 2: Ch.16,17,23 | IN CLASS | Seating: SKIP
Every 3 rd row! | | | 3/23 | W | Spont. And Temp.
Statistical origin (physics) | 19 | 812-818
821-828 (opt) | | | 3/24-28 | Th-M | EASTER BREAK | Get some | , | | | | 9 | | Rest | | | | Date | | Day | Topic | Chapter | Pages | |------|--------|----------|--|-----------------|--| | | MAR. 2 | 24 (5 P/ | W) LAST DAY TO WITH | HDRAW WITH | A GRADE OF W | | 3/30 | | W | Entropy, standard, 2 nd
Law | 19 | 818-821,828-831 | | 4/1 | APRIL | F | Gibb's Energy and Temp
Gibbs Energy and K | 19 | 831-838
838-841 | | 4/4 | | Μ | Coupled Reactions
Hess's Law for ΔG , ΔS | 19 | 842-844 | | 4/6 | | W | Electrochemistry
Redox Review
Voltaic Cell $E^0 = E_{ox}^0 + E_{red}^0$ | 20 | 856-865
858-868 | | 4/8 | | F | E _{red} °, E _{ox} °, Spontaneity | 20 | 868-874 | | 4/11 | | Μ | Work and ∆G | 20 | 876-879 | | 4/13 | | W | Graphical Technique | 20 | In class only | | 4/15 | | F | Nernst Equation E° and equil'm const. Applications; Electrolysis | 20 | 880-886
886-892
893-896 | | 4/18 | , , | M | Nuclear Rxns; Stability;
1 st order Kinetics,
Geological Dating | 21 | 908-919
920-928 | | 4/20 | | W | REVIEW 19-21 (25 min) | | Optional may not be handout | | 4/22 | , | F | Exam 3: Ch. 19-21 (what we get to in Ch. 21) | IN CLASS | Seating: SKIP
Every 3 rd row | | 4/25 | | W | Transmutation | 21 | 918-920 | | 4/27 | | W | Einstein: mass/energy
Fission/fusion | 21 | 921- 931
932-938 | | 4/29 | | F | REVIEW for Final (minimally 25 min) | | In lecture may continue in disc'n | | 5/2 | MAY | M | FINAL EXAM :
Ch. 14-17,19-21, 23 | 1:00 P - 3:00 P | TBA
(FH-133
probably) | # Representative Problems, End of Chapter Problems & Discussions: Students who are making good progress in the course should be able to solve, independently, most or all of the end-of-chapter problems in the text. You should attempt to work out as many example problems and end-of-chapter problems as possible before taking exams. A group of representative problems is listed below as assigned problems. The solution manual with the worked out problems will be kept on reserve in Cudahy Library. A comprehensive review containing additional problems will be posted approximately one week before the midterm exams, which also serves for the final exam. Discussions count 10% of grade, and should be attended. Discussion problems will be given to be attempted by groups of 3-4 students within the 50-minute discussion. Students must stay the entire period (unless otherwise instructed) and work on assigned discussion problem(s) to earn up to 10% of grade. The solutions will be posted on blackboard, discussions will be returned by the following discussion, or during the same week if a Friday exam occurs in that week. The student is strongly encouraged to attempt all suggested problems (text-book and discussion) and contribute significantly to the group discussion activity. Student's extent of group participation will be noted and mentioned in any recommendation letters. ## Assigned Exercises: | chapter | page | Problems (*means more involved;** means unassigned reading may be required) | |---------|-------|--| | 14 | 615: | 3a, 5, 7, 9, 12, 19, 21 a - c, 23, 25 (sim. to 23), 27, 29, 33, 37, 38, 41, 43, 45, 50 | | | | (glucose is C ₆ H ₁₂ O ₆ I) 57, 61, 63*, 67, 73, 75, 91, 95, 99,105, **117. | | 15 | - | 1, 2, 6, 9, 13, 15, 17, 23, 25, 27, 28, 33a, 35, 37, 39, 45 find [Cl ₂] _{eq} , next PV = nRT | | | 661: | 51, 53, 55, 57, 61, 63, 65, 67, *74, 79, *80.
I don't overly emphasize K _c vs K _p but for practice, do #24, use formula 15.14 on page 636 | | | | % ionization = $\frac{x}{x_o}$ × 100%; x _o = starting concentration, unit usually M; | | 16 | 715: | 1, 3, 10, 15, 19, 21, 23, 27, 29, 33, 37, 43, 45, 47, 53, 55, 57, 61, 65, 69, 71, 73, | | | | 77, 79, 81, 85, 109, 116*, 119*; 1**, 12**, 95**, 99** **compares various A/B models | | 17 | 766: | $1, 6, 10, 5, 17$ (% ionization \leftrightarrow [H †]), 19, 21, 27, 29, 33, 35, 37, 41, 43, 47, 53, 55, 57, | | | | 61, 69, 73, 83; 12**, 67** note: K_a , K_b and K_{sp} may be involved in some problems concurrently. | | 19 | 845: | 1, 3, 7, 9, 11, 13, 15, 25, 35, 37, 41, 43, 49, 53, 59, 61, 65, 69, 71, 79b, 83, 85, | | | | 98* 1 st find ΔG_{\circ} (appendix), 2 nd K: use ΔG_{\circ} = -RTLnK, 3 rd : $\Delta G = \Delta G_{\circ}$ + RTLnQ; | | | | 10*, 75*, 94*, 106** | | 20 | 899: | 4, 6, 7, 12, 13, 15, 19, [23, 25 review balance redox rxn] 29a-e, 31, 37, 39, 43, 53, | | | | 55, 57, 59, 61a, 65, 67, 99, 100; 103*, 87**, 73*, 75* (these are longer than usual) | | 21 | 946 | 1, 5, 9, 11, 13,17, 21, 29, 35, 37, 47, 49, 55, 61 extra: 72, 74, 63*, 80*, 31** | | 23 | 1031: | 15, 16, 23, 25, 27, 35, 37, 41, 43, 47, 55, 57, 59, 61, 63; extra nerdy: 73,74, 80 | #### Academic Honesty: All students are responsible for exercising the highest level of academic honesty while taking exams. They should peruse the College of Arts & Science policy on plagiarism/cheating, stated at: http://www.luc.edu/media/lucedu/cas/pdfs/academicintegrity.pdf As in the past, cheating will be SEVERELY dealt with, *minimally* costing the offender a grade of "zero" for the item that was submitted and this grade cannot be dropped. Additionally, the incident <u>must</u> be reported to the Chemistry Department Chair and the Office of the CAS Dean. Depending on the seriousness of the incident, additional sanctions may be imposed. Which *has* happened before. ## Grading Scheme: There are two grading schemes, and whichever one yields the higher grade will be employed after the final has been taken: If all midterms went fairly well: 20 % midterm, 10% discussion, 30% final If one midterm not so good: 20% the other two, 10% discussion, 50% final # Grading Scale: | Grad | e Scale: | Α | ≥ 91 | A- | 88-90 | |------|----------|---|-------|----|-------| | B+ | 85-87 | В | 81-84 | B- | 78-80 | | C+ | 75-77 | С | 71-74 | C- | 67-70 | | D+ | 64-66 | ٥ | 61-63 | F | < 60 | #### Examinations Three hour exams and the final exam will be given on February 19, March 21, April 22, and May 2, respectively, also noted in the schedule. 90% of your course grade will be determined from these as explained further below. The other 10% will be determined from your discussion grades. The exams are cumulative, i. e., may include material that has been queried on previous exams. The final exam is comprehensive and cumulative. #### Final Exam: Please note that the final examination must be taken. Failure to take the final exam will result in the grade "F". If a student has missed the final for some valid reason, she/he must present the Dean's office with reasonable proof of illness or accident, verified by a doctor's note, police report, etc., in order to take the makeup final on a single date designated by the Dean's office. A fee may apply and there is no guarantee that content on the make-up final will correspond to / have the same weight as the scheduled final. ### Laboratory: Chemistry 112, the general chemistry laboratory course, should be taken concurrently with the lecture course in general chemistry. The lecture and the laboratory courses are graded independently. Students should first consult the Chemistry Department Bulletin opposite the wall facing the chemistry office for information. Then, if they still have unresolved issues, they should contact Dr. Angela Boerger, the administrator of the laboratories. # Flanner Hall-133 Room Instructions on Exam Days - 1) When you enter the auditorium, go to the front and place your book bag there. Remove your calculator slipcover and placed it in book bag. - 2) Starting from the first row nearest the lectern, sit quickly in every other seat and skip every third row. This vacant third row provides an aisle for the proctor to walk through and address any appropriate questions that student may have during exam. Do not try to sit with friends or near one's usual area. The exam is only 50 minutes, so excessive delays will cut into exam-taking times. - 3) Place your student ID conspicuously on your desk so that attendance may be noted (during exam). - 4) Have several pencils/pens, eraser, etc. and a calculator in good working order. - 5) Proctors have been instructed to **confiscate the exams of** any **student** using a calculator with its slipcover in place or **whose actions are suspect**. - 6) Read over the entire exam. You may find a problem in the middle, or at the end, that suits you better to start. The three or so minutes spent glancing over the entire exam will be more than compensated for by the strategy and priorities that you formulate. The recommended order to do problems is: - (1) what you know well FIRST - (2) what you're sure you can at least start NEXT - (3) what you haven't have a clue LAST I have tried to arrange problems in a reasonable order, but my perception and the student's will certainly differ in some aspects. So, take a few minutes to read over the exam and *devise your own strategy*. - 7) When you have **concluded, turn in your exam** to a proctor. Then **leave** as **quietly** and as expeditiously as possible as to not disturb other exam takers. - 8) Normally exams administered on Friday will be returned no later than the following Wednesday. ## Advanced Studies Recommendation Protocol Later in your student career, you may require a letter of recommendation (LOR) for graduate school, medical school, or the like. If I am chosen among your recommenders, the following policy ensues: - 1. Deadline for LOR (letter of recommendation) requests: Feb 1st of the application year. - 2. Student must generally possess GPA of 3.5 or above. However, a student might be considered if she or he presents a written explanation that reveals an exceptional circumstance accounting for a lower grade point average. - 3. Student must provide attached in one email, a document listing his/her correct GPA, contact information, deadline(s), and also all chemistry, biology and physics courses and labs that the student has take—in the following format (or Committee format, if you are applying through committee): - a. GPA - b. reliable, current email and telephone # that student checks regularly - c. DEADLINE - d. Table with header: course taken, instructor, grade Example: | | | P | | |---------------|---------------|------------------|-------| | Course | Semester/year | Instructor | Grade | | Chemistry 101 | Fall /2015 | Dr. WGJ | Α- | | Biology 210 | Spring /2016 | Dr. Barbara Haas | Α | - e. If applying through Committee, student initiates process that culminates in a link being sent to me with which to submit LOR. - f. If applying "outside the Committee"—see items 5, 6 below, a list of all schools of the applicant and **ALL of their DEADLINES**. - g. Regarding part f: all cover forms, application packages, envelopes in one binder, folder, or otherwise secure containment, with like items paperclipped together. - 4. I'd love to read your personal statements, even in rough draft form. It tells me something about you and helps me to shape a recommendation. This article is not required, but I recommend it. - 5. It is STRONGLY recommended that the student apply through the Loyola Pre-Health Advisory Committee. Well-regarded by the medical /dental/ pharmaceutical community, the Committee's voice of endorsement will increase the merit of the student's application. Their method also assures that the student's personal statement is strong and well written. If the student applies via Committee, I will be contacted. - 6. APPLICATIONS OUTSIDE COMMITTEE: If a student who I can recommend elects to apply apart from the Pre-Health Advisory committee, she/he must perform steps 2-4 and email me at wgreene@luc.edu. Online LOR uploading protocols (AMCAS, PTCAS, Interfolio, etc.) are STRONGLY preferred. Because of the number of requests, your LOR won't be started until all items in 2 are fulfilled #### LOYOLA UNIVERSITY CHICAGO SPRING CALENDAR 2016 | January 12 (midnight) | Sunday | Open registration ends | |-----------------------|-----------------------|--| | January 13 | Monday | Spring Semester begins | | January 15 | Pionday | Late and Change Registration begins Late registration fees apply | | January 18 | Monday | Martin Luther King, Jr., Holiday: No classes | | January 19 | Monday | Late and change registration ends Last day to withdraw without a mark of "W." | | February 1 | Sunday | Last day to drop class(es) with a Bursar credit of 100% | | February 1 | Monday | Last day to convert from credit to audit or vice versa | | February 15 | Sunday | Last day to drop class(es) with a Bursar credit of 50% | | February 15 | Monday | Summer Registration begins | | February 10 | Wednesday | Ash Wednesday: Classes meet; Special services | | February 22 | Sunday | Last day to drop class(es) with a Bursar credit of 20% (zero credit thereafter) | | February 29 | Monday | Last day for students to submit assignments to change an "I" grade to a letter grade for Fall Semester 2008; Faculty may set earlier deadlines with students | | February 29 | Monday | Early Alert process begins | | March 1 | Saturday | Last day to file applications with Deans' offices for degrees awarded in December for this year. | | March 7 - 12 | Monday-
Saturday | Spring Break: No classes | | March 14 | Monday | Classes resume after Spring Break | | March 28 (5:00 P) | Monday | Last day to withdraw with a grade of "W" After this date, the penalty grade of "WF" will be assigned | | Mar. 24 – Mar. 28 | Th(4:15) –
M(4:15) | Easter Holiday | | April 18 | Monday | Fall Semester Registration begins | | April 29 | Friday | Spring Semester classes end | | May 2 | Monday | 102 Chemistry Final convenes May 2 2016
(Monday) from 1:00 P to 3:00 P | University Bookstore (Lake Shore) Phone: 773-508-7350 6435 N. Sheridan Road Manager: Stephen Baine Email Address: luc-lsc@bkst.com